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Abstract. We employ the two independent Casimir operators of the Poincaré group, the squared four-
momentum, p2, and the squared Pauli-Lubanski vector,W2, in the construction of a covariant massm, and
spin- 3

2
projector in the four-vector spinor, ψµ. This projector provides the basis for the construction of an

interacting Lagrangian that describes a causally propagating spin- 3

2
particle coupled to the electromagnetic

field by a gyromagnetic ratio of g 3

2

= 2.

PACS. 11.30.Cp Lorentz and Poincaré invariance – 03.65.Pm Relativistic wave equations

1 Introduction

High-spin particles occupy an important place in theo-
retical physics. For the first time they were observed as
resonant excitations in pion-nucleon scattering. The Par-
ticle Data Group [1] lists more than thirty non-strange
baryon resonances with spins ranging from 3

2 to 15
2 , and

more than twenty strange ones with spins from 3
2 to 9

2 .
Baryon resonances have been extensively investigated in
the past among others at the former Los Alamos Meson
Physics Facility (LAMPF), and at present their study con-
tinues at the Thomas Jefferson National Accelerator Fa-
cility (TJNAF) [2]. Such particles are of high relevance in
the description of photo- and electro-pion production off
proton, where they appear as intermediate states, stud-
ies to which the Mainz Microtron (MAMI) devotes itself
since many years [3]. Search for high-spin solutions to the
QCD Lagrangian has been recently reported by the Lat-
tice Collaboration in ref. [4]. Moreover, also the twistor
formalism has been employed in the construction of high-
spin fields [5]. Integer high-spin meson resonances with
spins ranging from 0 to 6 can have importance in various
processes revealing the fundamental features of QED at
high energies such as pair production [6]. However, the
most attractive high-spin fields appear in proposals for
physics beyond the standard model which invoke super-
symmetry [7] and contain gauge fields of fractional spins
such as the gravitino —the supersymmetric partner of the
ordinary spin-2 graviton. Supersymmetric theories open

a e-mail: mauro@fisica.ugto.mx

the venue to the production of fundamental spin- 3
2 parti-

cles at early stages of the universe, whose understanding
can play an important role in its evolution [8].

The description of high spins takes its origin from
refs. [9–11] which suggest to consider any fractional spin s
as the highest spin in the traceless and totally symmetric
rank-(s− 1

2 ) Lorentz tensor with Dirac spinor components,

ψµ1...µs− 1

2

. For spin- 32 one has to consider the four-vector

spinor, ψµ,

ψµ = Aµ ⊗ ψ '
(
1

2
,
1

2

)
⊗
[(

1

2
, 0

)
⊕
(
1

2
, 0

)]
, (1)

the direct product between the four-vector, Aµ, and the
Dirac spinor, ψ, and solve the system of three linear (in
the momenta) equations

(6 p−m)ψµ = 0, (2)

γµψµ = 0, (3)

pµψµ = 0, (4)

known as the Rarita-Schwinger (RS) framework. Next,
one designs [12] the most general family of Lagrangians
depending on the undetermined parameter (A), with the
aim to reproduce eqs. (2)-(4). The Lagrangians obtained
this way read

L(RS)(A) = ψ
µ (
pαΓ

α
µ ν(A)−m Bµν(A)

)
ψν , (5)
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where

Γ α
µ ν(A) = gµνγα +A(γµg

α
ν + gαµγν) +Bγµγ

αγν ,

Bµν(A) = gµν − Cγµγν ,

A 6= 1

2
, B ≡ 3

2
A2 +A+

1

2
, C ≡ 3A2 + 3A+ 1.

(6)

The case A = − 1
3 corresponds to the Lagrangian origi-

nally proposed in [10]. Another value widely used in the
literature is A = −1 in which case the Lagrangian simpli-
fies to

L(RS)(A = −1) = ψ
µ (
pαε

α
µ νργ

5γρ − im σµν
)
ψν . (7)

If we define

Kµν(A) = pαΓ
α

µ ν(A)−m Bµν(A), (8)

the above Lagrangian factorizes as

L(RS)(A) = ψ
µ
Rµρ

(
A

2

)
Kρσ(0)Rσν

(
A

2

)
ψν , (9)

where
Rµρ(w) ≡ gµρ + wγµγρ. (10)

This factorization can be used to show that the La-
grangian is invariant under the point transformations

ψµ → ψ′µ = Rµν(w)ψ
ν , A→ A− 2w

1 + 4w
. (11)

Over the years, eqs. (2)-(4) have been widely applied
in hadron physics to the description of predominantly the
∆(1232) —and occasionally the D13(1520) resonances and
their contributions to various processes. Recent applica-
tions of the Rarita-Schwinger spin- 3

2 description to calcu-
lations of light-hadron properties along the line of chiral
perturbation theory can be found in refs. [13,14].

The freedom represented by the parameter A reflects

invariance under “rotations” mixing the two spin- 1
2

+
and

1
2

−
sectors residing in the RS representation space besides

spin- 32 [15,16]. It can be shown [17] that the elements of
the S-matrix do not depend on the parameter A. Yet, this
symmetry, when implemented into the interacting theory,
introduces ambiguities represented by free parameters, the
so-called “off-shell” parameters [15,16,18,19]. This is not
to remain the only disadvantage of the RS framework.
A detailed study of eqs. (2), (3), and (4) revealed that
the Rarita-Schwinger framework suffers some more fun-
damental weaknesses. The quantization of the interacting
spin- 32 field turned out to be inconsistent with Lorentz
covariance, an observation reported by Johnson and Su-
darshan in ref. [20]. Furthermore, the wavefronts of the
classical solutions of the Rarita-Schwinger spin- 3

2 equa-
tions were shown to suffer acausal propagation within the
electromagnetic environment, an observation due to Velo
and Zwanziger [21,22]. This is an old problem and sev-
eral remedies have been suggested over the years [23–25].
In [24], it was shown that the standard Rarita-Schwinger
description allows to avoid the Velo-Zwanziger problem

only to the cost of propagating simultaneously twelve de-
grees of freedom associated with spin- 1

2 , and spin- 32 , while
in [26] the same was proved in letting the masses of the
spin- 12 sectors go to infinity. The more recent ref. [25] sug-
gests two new wave equations in ψµ, one of which is linear
and local, and the other, quadratic and non-local. The lo-
cal equation propagates causally all sixteen degrees of free-

dom in ψµ associated with the spin-cascade ( 1
2

+
, 1

2

−
, 3

2

−
),

but weighted with three different masses. The non-local
equation propagates causally the twelve degrees of free-

dom corresponding to spin- 1
2

−
and 3

2

−
treated as mass-

degenerate. The latter results indicate that the descrip-
tion of a causal single spin- 3

2 propagation is beyond the
reach of the Rarita-Schwinger framework, an observation
reported also in [27].

It is the goal of the present work to construct a single-
spin- 32 Lagrangian and associated wave equation such that
the wave fronts of its solutions propagate causally within
an electromagnetic environment and the spin- 3

2 particle
is coupled to the electromagnetic field through a gyro-
magnetic ratio of g 3

2

= 2 as required by unitarity in the

ultrarelativistic limit [28,29]. The Lagrangian in question
is entirely based upon the Poincaré group generators in ψµ

and the magnetic coupling is identified in a fully covariant
fashion. Compared to this, within the Rarita-Schwinger
framework the gyromagnetic factor is extracted at the
non-relativistic level [12,30,31] or from calculating pion-
nucleon bremsstrahlung and a subsequent comparison to
low energy theorems [32].

The paper is organized as follows. In the next section
we outline the general procedure of pinning down an in-
variant subspace of mass m and spin s on the example
of a generic Lorentz group representation containing two
Poincaré invariant spin-sectors, for simplicity. There, we
further present the associated second-order (in the mo-
menta) equation of free motion. As a consistency check
for our suggested formalism, we re-derive there the Proca
equation in applying the procedure to ( 1

2 ,
1
2 ). In sect. 3 we

apply the above procedure to the four-vector spinor and
derive the corresponding equation of motion, the associ-
ated Lagrangian, and the respective propagator. Section 4
is devoted to the symmetries of the suggested Lagrangian
in the massless limit and its relation to “rotations” within
the spin- 12 sector. In sect. 5 we introduce electromagnetic
interactions. The paper closes with a brief summary and
has two appendices.

2 Particle dynamics and Poincaré group

invariants

2.1 The Casimir operators p2 and W2 and their
invariant vector spaces

In the present work we aim to identify spin- 3
2 directly

and in a covariant fashion according to the conventional
understanding of a particle as an invariant vector space of
the two Casimir invariants of the Poincaré group, the first
being the squared four-momentum, p2, and the second,
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the squared Pauli-Lubanski vector, W2. Accordingly, the
corresponding states must be labeled by the eigenvalues
of these operators (see ref. [33] for details),

p2Ψ (m,s) = m2Ψ (m,s), (12)

W2Ψ (m,s) = −p2s(s+ 1)Ψ (m,s). (13)

Herem stands for the mass, while Ψ (m,s) denotes a generic
Poincaré group representation of mass m and rest-frame
spin s. Equation (12) is the Klein-Gordon equation that
fixes the mass of the states, while eq. (13) fixes the spin. As
already mentioned in the introduction, the mass shell con-
dition as reflected by the Klein-Gordon equation has been
of wide use in the formulation of free-particle Lagrangians,
not so the spin condition. We shall formulate a new La-
grangian formalism that incorporates eqs. (12), (13) on
equal footing and obtain a single condition on the field
that encodes both the mass shell, and spin conditions.
In so doing, we first have to resolve the notorious prob-
lem of non-coincidence between Poincaré and Lorentz
group labels that occurs for all representations beyond
(s, 0)⊕ (0, s).

Indeed, Lorentz representations are labeled by the so-
called left (sL), and right-handed, (sR), “spins”, the re-
spective eigenvalues to S 2

L = 1
4 (J + iK )2, and S

2
R =

1
4 (J − iK )2, where J , and K represent the generators of
rotations and boost in the basis of interest. The Poincaré
s-label enters the Lorentz representation, Ψ (m,(sL,sR)), via
s = |sL − sR|, |sL − sR| + 1, . . . , (sL + sR), which causes
reducibility of Ψ (m,(sL,sR)) into the following Poincaré in-
variant subspaces:

Ψ (m,(sL,sR)) −→ Ψ (m,|sL−sR|) ⊕ Ψ (m,|sL−sR|+1)

⊕ . . .⊕ Ψ (m,(sL+sR)) . (14)

The problem one is facing now is the covariant tracking of
the sector of interest. In the next subsection we formulate
our procedure for the covariant tracking of the highest
spin- 32 of mass m in the vector spinor representation ψµ.

2.2 Covariant mass-m and spin-s tracking procedure

2.2.1 The general case

We begin by noticing that in general the generators of
the Poincaré group are marked by external space-time
(Lorentz) indices (see appendix A) and which we denote
by small Greek letters µ, ν, λ, ρ, etc. next to represen-
tation specific indices (denoted by capital Latin letters
A,B,C, . . . etc.) At times, like for example in ψµ, it may
be possible and useful to separate the capital Latin letter
indices into Lorentz and spinorial parts. Therefore, the
most general form of the Pauli-Lubanski vector operator
is given by

(Wλ)AC =
1

2
ελρσµ(M

ρσ)ACp
µ. (15)

Its squared form is then written as

(WλWλ)AB =
1

4
ελρσµ(M

ρσ)ACp
µελτξν(M

τξ)CBp
ν

≡ TABµνp
µpν . (16)

Notice that TABµν is momentum independent.

Our pursued spin-tracking strategy will be the con-
struction of covariant projectors onto the Poincaré
invariant Ψ (m,s) sectors of the Lorentz representa-
tion of interest. Below, we illustrate this procedure
for the simplest case of a generic Lorentz repre-
sentation having only two Poincaré invariant sub-
spaces with spins differing by one unit. We denote
the maximal and minimal spins by s and (s − 1),
respectively.

The covariant mass-m and spin-s tracking procedure
can be outlined as follows. Construct the Poincaré covari-
ant mass-m–spin-s, and mass-m–spin-(s − 1) projectors
as

P(m;s)(p) = − 1

2s

(W2

m2
+ s(s− 1)

p2

m2
1n×n

)
, (17)

P(m;s−1)(p) =
1

2s

(W2

m2
+ s(s+ 1)

p2

m2
1n×n

)
, (18)

where n stands for the dimensionality of the representa-
tion of interest. We must remark that these operators are
projectors over well-defined spins whenever the particles
are on mass shell. Indeed, using the basis of eigenstates of
W2 it can be easily shown that on mass shell they satisfy
the following relationships:

[
P(m;s)(p)

]2
= P(m;s)(p),

[
P(m;s−1)(p)

]2
= P(m;s−1)(p),

P(m;s)(p)P(m;s−1)(p) = 0,

P(m;s)(p) + P(m;s−1)(p) = 1n×n. (19)

The important point here is that in the general case, im-
posing the condition

P(m;s)(p)Ψ (m,s) = Ψ (m,s), (20)

will simultaneously track down the desired spin s, nullify
spin (s− 1), and incorporate the mass shell condition

P(m;s)(p)Ψ (m,(s−1)) = 0, (21)

(p2 −m2)Ψ (m,s) = 0. (22)

Thus our projectors simultaneously track down well-
defined mass-m and well-defined spin-s or spin-(s − 1)
eigenspaces. In its most general form, eq. (20) can be writ-
ten as [

−ΓABµνp
µpν +m2δAB

]
Ψ

(m,s)
B = 0, (23)

where

ΓABµν = − 1

2s
(TABµν + s(s− 1)δAB gµν) , (24)



292 The European Physical Journal A

with TABµν defined in eq. (16) from above. Compared to

ref. [34], the P(m;s)(p) projectors contain the additional
factor of p2/m2 in front of s(s − 1)1n×n which is indis-
pensable for fixing correctly the mass of the tracked state
as visible through eq. (41) below.

2.2.2 The spin-1 case

The most important examples for applications of the co-
variant spin-tracking procedure are the four-vector, Aµ,
and the four-vector spinor, ψµ. In the former case, using
the explicit form for W 2 in eq. (A.6) from appendix A we
obtain

ΓP
αβµν = gαβgµν − gανgβµ, (25)

and eqs. (21), (23) yield just the Proca equation

[
(−p2 +m2)gµν + pµpν

]
Aν = 0, (26)

which can be derived from the following Lagrangian:

LP = −1

2
(∂µAα)ΓP

αβµν∂
νAβ +

m2

2
AαAα

= −1

4
FµνFµν +

m2

2
AαAα. (27)

It is quite instructive to rewrite eq. (26) in terms of the
spin-1 and spin-0 projectors in Aµ, in turn denoted by

P
(1)
µν , and P

(0)
µν , and defined as

P(1)
µν =

(W 2)µν
−2p2

= gµν −
pµpν
p2

, P(0)
µν =

pµpν
p2

. (28)

In so doing, one finds

P(m,1)
µν (p)Aν =

p2

m2
P(1)

µνA
ν = Aµ , (29)

an equation which reveals the Poincaré invariant projector
P(m,1)(p) as the direct product of the mass-m and spin-
1 projectors. The inverse to eq. (26) provides the Proca
propagator as

ΠProca
µν =

∆Proca
µν

(p2 −m2 + iε)
, (30)

where

∆Proca
µν = −gµν +

pµpν

m2
= −P(1)

µν +
p2 −m2

m2
P(0)

µν . (31)

Throughout this paper, propagators are given in momen-
tum space, hence momentum operators like pµ ≡ i∂µ in
the projectors must be replaced by their eigenvalues. This
simple example shows what one can anticipate from the
application of the covariant mass-m and spin- 3

2 tracking
procedure to the four-vector spinor representation.

3 Free spin-3

2
beyond the Rarita-Schwinger

framework

In this section we apply the spin-tracking procedure to the
vector spinor representation. The decomposition of this
space into Poincaré invariant sectors reads

ψµ −→ [Ψ (m, 3
2
)](2) ⊕ [Ψ (m, 1

2
)](4), (32)

where the subscript labels the multiplicity of the repre-
sentation. Correspondingly, the Poincaré covariant spin- 3

2
projector in eq. (17) becomes

P(m; 3
2
)(p) = −1

3

(W2

m2
+

3

4

p2

m2
116×16

)
. (33)

As long as the projectors are per construction covariant,
the equation of motion for spin- 3

2 in ψµ and in any basis
reads

[
−1

3

(
W2 +

3

4
p2116×16

)
−m2116×16

]
ψ = 0. (34)

In terms of the tensor TABµν , defined in eq. (16), the latter
equation rewrites to
[
−1

3
TABµνp

µpν −
(
1

4
p2 +m2

)
δAB

]
ψB = 0,

A : αa, B : β b, (35)

where a is the spinorial index.

3.1 The W2- and p2-driven spin- 3
2
equations

In order to obtain the explicit form of eq. (35) in the inter-
esting ψµ basis where Lorentz and spinor indices appear
separated, we, first of all, have to find TABµν , a calcula-
tion that we present in appendix A. Insertion of eq. (A.14)
from the appendix into eq. (35) amounts to the following
free spin- 32 wave equation:

[−Kαβ +m2 gαβ ]ψ
β = 0, (36)

with
Kαβ ≡ Γαβµνp

µpν , (37)

where, for the sake of simplicity, we suppressed the spino-
rial indices and defined Γαβµν as

Γαβµν =
2

3
(gαβgµν − gανgβµ)

+
1

6
(ελ αβµγ

5σλν + ελ αβνγ
5σλµ)

+
1

12
σλµσ

λ
νgαβ −

1

4
gµνgαβ . (38)

It immediately verifies that the operator Kαβ satisfies the
following relations:

pαKαβ = 0, Kαβp
β = 0,

γαKαβ = 0, Kαβγ
β = 0. (39)
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The resulting free particle equation reads

[ (
−p2 +m2

)
gαβ +

2

3
pβpα

+
1

3
(pαγβ + pβγα) 6 p−

1

3
γα 6 pγβ 6 p

]
ψβ = 0. (40)

It equivalently rewrites as

P(m, 3
2
)

αβ (p)ψβ =
p2

m2
P

( 3

2
)

αβ ψ
β = ψα . (41)

Here, P
( 3

2
)

αβ stands for the spin- 3
2 projector in ψµ and is

given by

P
( 3

2
)

αβ = −1

3

(
W2

αβ

p2
+

3

4
gαβ

)
. (42)

Equation (41) reveals the Poincaré invariant projector

P(m, 3
2
)(p) as the direct product of a mass-m, and spin- 3

2
projectors, much alike eq. (29) and as it should be. Using
eqs. (39) allows to find that the four-vector spinor field
satisfies

[p2 −m2]ψα = 0, (43)

γαψ
α = 0, (44)

pαψ
α = 0. (45)

3.2 The spin- 3
2
Lagrangian beyond Rarita-Schwinger

The equation of motion (36) can be derived from the fol-
lowing manifestly Hermitian Lagrangian:

Lfree = −
1

2
[(∂µψ

α
)Γαβµν∂

νψβ + (∂νψ
β
)Γαβµν∂

µψα]

+ m2ψ
α
ψα , (46)

where
Γαβµν ≡ γ0(Γαβµν)

†γ0. (47)

Using eq. (A.14) it is easy to show that

Γαβµν = Γβανµ, (48)

hence our Lagrangian can be rewritten to the simpler form

Lfree = −(∂µψ
α
)Γαβµν∂

νψβ +m2ψ
α
ψα. (49)

Subjecting eq. (36) and its adjoint to standard algebraic
manipulations, or calculating directly the Noether current
for the usual phase invariance of the Lagrangian (49) we
obtain

jµ = (i∂νψ
α
)Γαβνµψ

β − ψα
Γαβµνi∂

νψβ , (50)

as a conserved current

∂µjµ = 0. (51)

3.3 The spin- 3
2
propagator

The formal calculation of the two-point Green function
in our theory requires to work out the quantization of
the formalism which is presently under investigation and
beyond the scope of this paper. However, we calculated the
propagator as the inverse of the operator (−Kαβ+m

2gαβ).
In so doing, we obtain

Παβ =
∆αβ

(p2 −m2 + iε)
, (52)

where

∆αβ = −gαβ +
2

3m2
pβpα +

1

3m2
(pαγβ + pβγα) 6 p

− 1

3m2
γα 6 pγβ 6 p . (53)

It is instructive to rewrite this tensor in terms of the pro-
jectors over well-defined spins. The result is

∆αβ = −P
( 3

2
)

αβ +
p2 −m2

m2
P

( 1

2
)

αβ , (54)

with

P
( 1

2
)

αβ =
W2

αβ

3p2
+

5

4
gαβ , (55)

being the projector on spin- 1
2 in ψµ. Equation (54)

shows that off-shell the four-vector spinor carries all its
lower-spin components, much alike the case of the four-
vector in the description of “off-shell” electroweak gauge
bosons [19].

That Παβ is the inverse to the free particle equation
can be easily shown using eq. (41) in combination with the
nilpotent and orthogonality properties of the projectors.
The similarity of the spin- 3

2 propagator in eq. (54) and
the Aµ-propagator in eq. (31) can hardly be overlooked.

Finally, the ∆αβ operators have the following simple
properties:

pα∆αβ =
1

m2

(
p2 −m2

)
pβ ,

∆αβp
β =

1

m2

(
p2 −m2

)
pα ,

γα∆αβ =
1

m2

(
p2 −m2

)
γβ ,

∆αβγ
β =

1

m2

(
p2 −m2

)
γα. (56)

Before concluding the current section, we wish to no-
tice that eq. (41) finds a marginal mentioning in ref. [35],
however without any discussion on its link to W2 and
without exploiting its potential in the description of
spin- 32 .

4 Symmetries of the Lagrangian

This section is devoted to the symmetries of eq. (36) in
the massless limit, their impact on the massive case and
its relation to the prime question of the uniqueness of the
Lagrangian in eq. (49).
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4.1 Parameter independence of the massless case

In the massless case eq. (36) remains invariant under the
following “gauge” transformation:

ψβ → ψ′β = ψβ + pβχ, (57)

with χ being an arbitrary spinor. This invariance appears
as a consequence of

Kαβp
β = 0. (58)

It is the same as the conventional “gauge” symmetry sat-
isfied also by the (A = −1) version of the massless RS
equation of motion in eq. (7) which has been extensively
used in particular in supergravity [35]. More recently, the
symmetry in eq. (57) has been exploited as a guiding prin-
ciple in the construction of chiral Lagrangians for light
baryons [36]. The relation

Kαβγ
β = 0, (59)

in eq. (39) implies invariance of eq. (36) under the point
transformation

ψβ → ψ′β = ψβ + γβχ. (60)

At that stage, the question on the uniqueness of the
formalism proposed here comes up. In order to answer
this question, let us first perform the following “rotation”
within the unphysical spin- 1

2 sector

ψβ → ψ′β = Rβ
ρ

(
A

2

)
ψρ, (61)

with R(w) given by eq. (10). In so doing, one produces
the A-dependent Lagrangian

L(A) = −(∂µψ ′́α)Γαβµν∂νψ′β

= −
(
∂µψ

σ
)
Γσρµν(A)∂

νψρ, (62)

with

Γσρµν(A) = R α
σ

(
A

2

)
ΓαβµνR

β
ρ

(
A

2

)
. (63)

At first glance, the equation of motion resulting from the
latter Lagrangian presents itself A-dependent as

−Γσρµν(A)pµpνψρ = 0. (64)

However, this impression is misleading. Indeed, by mak-
ing use of eq. (59) allows to eliminate the A-dependence
according to

Kσρ(A) ≡ Γσρµν(A)p
µpν

= R α
σ

(
A

2

)
KαβR

β
ρ

(
A

2

)
= Kσρ. (65)

This means that in the massless limit our eq. (36) is
unique. This uniqueness is of course related to the invari-
ance under the point transformations in eq. (60) as can

be easily seen in choosing the χ spinor as χ = A
2 γ ·ψ. The

only way for two different Lagrangians to produce one and
the same equation of motion is that they differ by a total
divergence term according to

L(A) = L − ∂µΛµ(A). (66)

That this is indeed the case follows directly from the ex-
plicit calculation of Λµ(A) giving

Λµ(A) =
A

2

[
ψ
σ
γσγ

αΓαρµν∂
νψρ + (∂τψ

σ
)Γσβτµγ

βγρψ
ρ
]

+
A2

4
ψ
σ
γσγ

αΓαβµνγ
βγρ∂

νψρ. (67)

In this manner the parameter independence of our sug-
gested formalism in the massless case establishes neatly.
Notice however that the operator Kαβ is not invertible,
meaning that the propagator in eq. (52) is singular in the
massless case. Same occurs for spin-1 due to the singu-
larity of the massless operator in eq. (26). This problem
reflects the gauge freedom of massless theories and is re-
solved by introducing a gauge fixing term into the La-
grangian, a technique that will acquire importance in the
following.

4.2 Extrapolation to the massive case

The mass term in eq. (36) breaks both the gauge symme-
try and the invariance under point transformations defined
in eqs. (59), (60). In the massive case calculations similar
to those presented in the previous subsection, yield the
following genuinely A-dependent Lagrangian

L(A) = LK + ψ
σ [
M2(A)

]
σρ
ψρ − ∂µΛµ(A), (68)

with

[
M2(A)

]
σρ

= m2R α
σ

(
A

2

)
Rαρ

(
A

2

)

= m2Rσρ(A(1 +A)). (69)

In order to understand the effect of the “rotation” within
the spin- 12 sector, let us rewrite the equation of motion in
terms of the projectors as

[
−p2

(
P( 3

2
)
)

µν
+m2gµν

]
ψν = 0. (70)

Next, we shall separate the spin- 3
2 from the spin- 12 mass

term as
[(
−p2 +m2

) (
P( 3

2
)
)

µν
+m2(P( 1

2
))µν

]
ψν = 0. (71)

The A-dependent equation of motion can be written as

R

(
A

2

)[(
−p2 +m2

)
P( 3

2
) +m2P( 1

2
)
]
R

(
A

2

)
ψ = 0.

(72)
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It is convenient now to use the P( 3

2
), P

( 1

2
)

11 , and P
( 1

2
)

22 pro-

jectors, and the so-called “switch” operators, P
( 1

2
)

12 ,P
( 1

2
)

12
which can be found, among others, in ref. [35] and read

(
P( 3

2
)
)

µν
= gµν −

1

3
γµγν −

1

3p2
(6 pγµpν + pµγν 6 p),

(
P

( 1

2
)

11

)

µν
= −pµpν

p2
+

1

3
γµγν +

1

3p2
(6 pγµpν + pµγν 6 p),

(
P

( 1

2
)

22

)

µν
=
pµpν
p2

,

(
P

( 1

2
)

12

)

µν
=

1√
3p2

(pµpν− 6 pγµpν) ,
(
P

( 1

2
)

21

)

µν
=

1√
3p2

(−pµpν+ 6 ppµγν) . (73)

The above operators constitute a complete set in the vec-
tor spinor representation space and satisfy the following
orthogonality and completeness relations:

Pa
ijP

b
kl = δabδjkP

b
il,

P( 3

2
) + P

( 1

2
)

11 + P
( 1

2
)

22 = 1. (74)

Further useful relations are

6 pP( 3

2
) = P( 3

2
) 6 p,

6 pP( 1

2
)

ij = ±P
( 1

2
)

ij 6 p, + if i = j,
− if i 6= j,

γµP
( 3

2
)

µν = P
( 3

2
)

µν γ
ν = pµP

( 3

2
)

µν = P
( 3

2
)

µν p
ν = 0,

γµ
(
P( 1

2
)
)

µν
= γν ,

(
P( 1

2
)
)

µν
γν = γµ,

pµ
(
P( 1

2
)
)

µν
= pν ,

(
P( 1

2
)
)

µν
pν = pµ. (75)

The P( 3

2
) projector was related to the squared Pauli-

Lubanski vector in eq. (42) whereas the projector in
eq. (55) expresses as

P( 1

2
) = P

( 1

2
)

11 + P
( 1

2
)

22 . (76)

These relations can be exploited to cast eq. (72) into the
form which manifestly shows that solely the mass term in
the spin- 12 sector is affected by the point transformation,

[(
−p2 +m2

)
P( 3

2
) +m2R

(
A

2

)
P( 1

2
)R

(
A

2

)]
ψ = 0.

(77)
Under the above “rotation” the mass matrix changes from
a diagonal form in both spin-sectors to one that remains
diagonal only in the spin- 3

2 but becomes non-diagonal in

the spin- 12 sector. This non-diagonality is irrelevant for on-
shell particles as is well visible upon contracting eq. (77)
with γσ and pσ, and recalling that the invertibility ofR(A2 )

requires A 6= − 1
2 ,

m2(1 + 2A)2γ · ψ = 0, ⇒ γ · ψ = 0,

m2(p · ψ +A(A+ 1)γ · ψ) = 0, ⇒ ∂ · ψ = 0. (78)

In this fashion, the form of the mass matrix in the
spin- 12 sector in the free equation remains without im-
portance. However, it becomes relevant for the off-mass
shell propagator. In order to see this, notice, that the A-
dependent propagator is easily calculated in the follow-
ing way. Let us first denote (−Kαβ +m2gαβ) in eq. (36)

by Oαβ . Upon the R(A2 ) transformation, Oαβ becomes

O(A) = R(A2 )OR(A2 ) and as long as the new propagator

comes from Π(A)O(A) = 1 then one finds Π(A) from

R

(
A

2

)−1

ΠR

(
A

2

)−1

R

(
A

2

)
OR

(
A

2

)
= 1. (79)

The latter equation leads to the following A-dependent
massive propagator:

Π(A) =
−P( 3

2
) + p2−m2

m2 R−1
(
A
2

)
P( 1

2
)R−1

(
A
2

)

p2 −m2 + iε
. (80)

Therefore, the remnant A-dependence affects only the
spin- 12 contribution to the off-shell propagator. In other

words, the parameter dependence of the massive spin- 3
2

propagator appeared as a consequence of respecting in the
massive theory the symmetries of the massless case. The
situation is by no means new. In a similar way, the gauge
symmetry of the massless spin-1 theory is respected by the
massive one on the cost of a parameter-dependent spin-0
sector in the massive gauge boson propagator, a subject
that we treat in some detail the following subsection.

4.3 Off-shell propagators and parameter dependence

In this subsection we shall make the case that the massive
off-shell spin- 32 propagator proposed here is of the type of
the propagators which appear in massive gauge theories
and that its parameter dependence reflects the symme-
tries of the massless theory, one of them being the gauge
freedom. In order to see this we begin with casting the
essentials of the standard massive gauge theories in the
language systematically used by us through this paper,
namely the one of the covariant projectors as applied to
the spin-0, and spin-1 sectors in the ( 1

2 ,
1
2 )-space. Then,

we analyze the parameter dependence of our propagator
in the light of the symmetries of the massless Lagrangian.

4.3.1 Gauge fixing in the massive spin-1 propagator

The problem of the parameter dependence of the off-shell
propagators is quite general indeed and appears in mas-
sive spin-1 gauge theories. In the massless case, eq. (26)
is not invertible as visible from eqs. (30), (31). The non-
invertibility reflects the gauge freedom and it is circum-
vented by the introduction of appropriate gauge fixing
terms into the Lagrangian according to

LQED = −1

4
FµνFµν − JµAµ −

1

2a
(∂µAµ)

2
. (81)
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Here, the Jµ current depends on the matter fields. The
wave equation associated with the latter Lagrangian reads

[
−p2gµν −

(
1

a
− 1

)
pµpν

]
Aν = Jµ. (82)

Equation (82) is now invertible and leads to the following
a-dependent propagator:

Πµν(a) =
1

p2 + iε

[
−gµν + (1− a)pµpν

p2

]

=
1

p2 + iε

[
−P(1)

µν − aP(0)
µν

]
, (83)

with the spin-1 projectors from eq. (28). Choosing specific
values for a is standard and known as “gauge fixing”. The
a = 1 value in eq. (83) is known as Feynman’s gauge while
a = 0 gives the Landau propagator.

The link to the massive case is established by notic-
ing that the gauge condition becomes a constraint that is
preserved under interactions whenever the massive gauge
boson is coupled to a conserved current. This is possi-
ble only within the context of mass generation via the
Higgs mechanism, a possibility which we highlight in brief
in what follows. To be specific, in massive gauge theories
one faces the problem to guarantee validity of the gauge
condition ∂ · A = 0. For this purpose and in analogy to
the massless theory one introduces a Lagrange multiplier
into the Lagrangian according to

LP = −1

4
FµνFµν+

m2

2
AµAµ−

1

2a
(∂µAµ)

2−JµAµ. (84)

The resulting massive equation of motion now becomes
[(
−p2 +m2

)
gµν −

(
1

a
− 1

)
pµpν

]
Aν = Jµ, (85)

or equivalently,
[(
−p2 +m2

)
P(1)

µν −
1

a

(
p2 − am2

)
P(0)

µν

]
Aν = Jµ. (86)

Here, pµ denotes the four-momentum of the gauge boson.
The associated propagator is well known and obtained as

Πµν(a) =
1

p2 −m2 + iε

[
−P(1)

µν − a
p2 −m2

p2 − am2
P(0)

µν

]

=
−gµν + (1− a) pµpν

p2−am2

p2 −m2 + iε
. (87)

The Proca propagator in eq. (30) corresponds to the par-
ticular choice of a =∞, and appears singular in the mass-
less case, much alike our propagator in eq. (52).

Although not obvious, the latter expression is related
to the conventional mass generation mechanism for gauge
bosons via the Higgs mechanism [37]. In order to illustrate
this statement one couples the gauge boson to a charged
scalar (“Higgs”) field defined as

φ =
1√
2
(v + χ1 + iχ2), (88)

and obtains the equation of motion from

∂µFµν = jν = e [φ∗(i∂νφ)− (i∂νφ
∗)φ]− 2e2Aνφ

∗φ

= −m2Aν −m∂νχ2 − e [χ1∂νχ2 − χ2∂νχ1]

−e2Aν(χ
2
1 + 2vχ1 + χ2

2), (89)

with m ≡ ev. In considering now the special gauge

∂µA
µ = mξχ2, (90)

where ξ is an arbitrary parameter one is led to

χ2 =
1

mξ
∂µA

µ. (91)

With that the equation of motion for the gauge boson
becomes

[
−p2 +m2

]
Aν −

(
1

ξ
− 1

)
pνp

µAµ =

ie [χ1pνχ2 − χ2pνχ1]

−e2Aν(χ
2
1 + 2vχ1 + χ2

2). (92)

The right-hand side of the latter equation contains inter-
actions of the gauge boson field with the Higgs field, χ1, as
well as self-interactions. Its left-hand side can be inverted
to yield the well-known ’t Hooft propagator

Π ’t Hooft
µν (ξ) =

−gµν + (1− ξ) pµpν
p2−ξm2

p2 −m2 + iε

=
1

p2 −m2 + iε

[
−P(1)

µν − ξ
p2 −m2

p2 − ξm2
P(0)

µν

]
. (93)

The ’t Hooft propagator describes massive vector particles
whose mass has been generated via the Higgs mechanism.
Now one recovers the propagator in eq. (87) in assuming
v 6= 0, and ξ = a in eqs. (88), (90). The v = 0 value
implies m = 0 and the absence of spontaneous symme-
try breaking. The resulting massless propagator coincides
with the one given in eq. (83). This brief reminiscence of
the massive spin-1 case is suggestive of the idea to view the
A-dependence of the massive spin- 3

2 propagator in eq. (80)
in the light of gauge fixing, an idea that we execute in the
next subsection.

4.3.2 “Gauge” fixing in the spin- 32 theory

In parallel to the spin-1 description, we here shall term to
the freedom in the choice of the massless ψβ provided by
the symmetries in eqs. (57), and (60) as “gauge” freedom
(better, “gauge” freedoms), and fix it by including into the
Lagrangian the associated Lagrange multipliers according
to

L = −(∂µψα
)Γαβµν∂

νψβ − 1

a

(
∂µψµ

)
(∂αψα)

−µ
2

b

(
ψµγ

µ
)
(γαψα)− ψ

µ
fµ − f

µ
ψµ. (94)
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Notice that we use the Lagrange multiplier µ2/b where µ
is an arbitrary (but fixed) mass scale which allows to treat
the parameters as dimensionless. This new Lagrangian
yields now the equation of motion as

[
−Kαβ −

1

a
pαpβ −

µ2

b
γαγβ

]
ψβ = fα, (95)

where fµ is some fermion current involving other fields.
The operator on the left-hand side of the latter equation
is now invertible. In terms of the projectors in eq. (73) it
is given by

O(m=0)(a, b) = −p2P( 3

2
) − 3µ2

b
P

( 1

2
)

11

− 1

ab

(
bp2 + aµ2

)
P

1/2
22 −

√
3µ2

b

(
P

( 1

2
)

12 + P
( 1

2
)

21

)
, (96)

where we used

γαγβ =
[
3P

( 1

2
)

11 + P
( 1

2
)

22 +
√
3
(
P

( 1

2
)

12 + P
( 1

2
)

21

)]

αβ
. (97)

The propagator in the “(a, b)-gauge” is now found to be

Π(m=0)(a, b) =
∆(m=0)(a, b)

p2 + iε
. (98)

Here,

∆(m=0)(a, b) = −P( 3

2
) − 1

3

[(
b

µ2
p2 + a

)
P

( 1

2
)

11

+3aP
( 1

2
)

22 +
√
3a
(
P

( 1

2
)

12 −P
( 1

2
)

21

)]
. (99)

This is the spin- 3
2 analogous to the massless spin-1 prop-

agator in eq. (83).
Next, we extrapolate to the massive case. Adding the

mass term to the Lagrangian results in

L = −(∂µψα
)Γαβµν∂

νψβ +m2ψ
α
ψα −

1

a

(
∂µψµ

)
(∂αψα)

−µ
2

b

(
ψµγ

µ
)
(γαψα)− ψ

µ
fµ − f

µ
ψµ. (100)

The massive equation of motion reads
[
−Kαβ +m2gαβ −

1

a
pαpβ −

µ2

b
γαγβ

]
ψβ = fα. (101)

In the a = ∞-“gauge” eq. (101) corresponds to the “ro-

tated” eq. (77), modulo the identification µ2

b = −A(1 +

A)m2. This observation reveals the effect of the rotation in
eq. (77) just as a change in the “gauge” used in the mass-
less case (massive case, in reference to the Higgs mecha-
nism).

In terms of the projectors in eq. (73), the operator
acting on the field on the left-hand side in eq. (101) reads

O(a, b) =
(
−p2 +m2

)
P( 3

2
) − 1

b
(3µ2 − bm2)P

( 1

2
)

11

− 1

ab

(
bp2 + a(µ2 − bm2)

)
P

1/2
22

−
√
3µ2

b

(
P

( 1

2
)

12 + P
( 1

2
)

21

)
. (102)

This operator has an inverse which is calculated as

Π(a, b) =
∆(a, b)

p2 −m2 + iε
, (103)

with

∆(a, b) = −P( 3

2
)

−b p2 −m2

(3µ2 − bm2)(bp2 + a(µ2 − bm2))− 3aµ4

×
[ (
bp2 + a(µ2 − bm2)

)
P

( 1

2
)

11

+a
(
3µ2 − bm2

)
P

( 1

2
)

22

−
√
3aµ2(P

( 1

2
)

12 + P
( 1

2
)

21 )
]
. (104)

The similarity of the massive spin- 3
2 off-shell propagator in

eq. (103) with the nominator from eq. (104) to the t’Hooft
propagator in eq. (93) is hardly to be overlooked. In both
cases the parameter dependence invokes propagation of
the unphysical spin-sectors that have been excluded on-
shell. This observation is suggestive of the idea to handle
the parameter dependence in eq. (104) in the spirit of
gauge fixing in massive theories.

In the b→∞ limit one finds

Π(a,∞) =
−P( 3

2
) + p2−m2

m2 P
( 1

2
)

11 − a p2−m2

p2−am2 P
( 1

2
)

22

p2 −m2 + iε
, (105)

whereas for a→∞ one obtains the propagator that takes
into account the γ · ψ = 0 constraint alone,

Π(∞, b) = ∆(∞, b)
p2 −m2 + iε

. (106)

Here,

∆(∞, b) = −P( 3

2
) − b p2 −m2

(3µ2 − bm2)(µ2 − bm2)− 3µ4

×
[(
µ2−bm2

)
P

( 1

2
)

11 +
(
3µ2−bm2

)
P

( 1

2
)

22 −
√
3µ2(P

( 1

2
)

12

+P
( 1

2
)

21 )
]
. (107)

Notice that neither Π(a,∞), nor Π(∞, b) are free from
singularities in the massless limit. Nonetheless, the general
propagator in eq. (103) that incorporates both symmetries
of the massless theory is not singular for m = 0 in which
case one recovers the propagator in eq. (98).

In the massive case, the simplest choice for the mass
scale would be µ2 = m2 in which case the general propaga-
tor is given by eq. (103) with the ∆(a, b) operator defined
in eq. (104) being replaced by

∆(a, b) = −P( 3

2
) − b

m2

p2 −m2

(3− b)(bp2 + a(1− b)m2)− 3am2

×
[ (
bp2 + a(1− b)m2

)
P

( 1

2
)

11 + a(3− b)m2P
( 1

2
)

22

−
√
3am2

(
P

( 1

2
)

12 + P
( 1

2
)

21

)]
. (108)
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Obviously, this expression is not suited for taking the
m → 0 limit. Finally, the counterpart to the spin-1 Lan-
dau propagator is obtained for a = b = 0 in which case
only spin- 32 is propagated,

Π(0, 0) =
−P( 3

2
)

p2 −m2 + iε
. (109)

Summarizing this section, in the massless case our
equation of motion is unique and has as two important
symmetries: i) the invariance under the gauge transfor-
mations in eq. (57), and ii) the invariance under the point
transformations in eq. (60). As long as Lagrangians differ-
ing by “rotations” within the spin- 1

2 sector are equivalent,
the massless formalism is unique. Mass terms break the
above symmetries in such a way that the γ · ψ = 0, and
∂ · ψ = 0 conditions (occasionally termed to as “gauge”
conditions) evolve to constraints. When properly taken
into account, the symmetries related to these constraints
yield a family of propagators whose spin- 1

2 sectors depend
on two parameters (termed to by us as “gauge” parame-
ters in reference to the associated symmetries in the mass-
less case). The propagator in eq. (52) represents just one of
the members of this family. In analogy to massive gauge
theories, the parameter-dependent terms in our off-shell
propagator can be thought of as terms associated with
“gauge fixing”. Alternatively, the mass terms may be gen-
erated via the Higgs mechanism, an interesting possibility
presently under investigation. From that perspective, the
formalism presented here seems to be a good candidate
for the description of massive spin- 3

2 gauge fields. Before
closing this section we would like to remark that in the
conventional Rarita-Schwinger formalism it is not possi-
ble to interpret the A-dependence within the context of
gauge fixing because the invariance under the transforma-
tion in eq. (7) is not general but an exclusive privilege of
the A = −1 case in eq. (57), and the symmetry in eq. (60)
is even completely absent.

5 Interacting spin-3

2
particles

The interacting theory is now obtained in the standard
way in gauging the Lagrangian in eq. (46) with the result

L = −(D†µψα
)ΓαβµνD

νψβ +m2ψ
α
ψα, (110)

where Dµ = ∂µ − ieAµ is the covariant derivative, (−e)
denotes the charge of the particle.

This Lagrangian can be written as

L = Lfree + Lint, (111)

with

Lint = ie
[
(∂νψ

α
)Γαβνµψ

β − ψα
Γαβµν∂

νψβ
]
Aµ

−e2ψα
Γαβµνψ

βAµAν

= ejµA
µ − e2ψα

Γαβµνψ
βAµAν . (112)

From the electromagnetic vertex in this Lagrangian we
obtain the electromagnetic transition current in momen-
tum space as

jµ(p
′, p) = uα(p′)[−Γαβνµp′ν − Γαβµνpν ]uβ(p), (113)

where we wrote the free-particle spinors as ψβ(x) =
uβ(p)e−ip·x. In order to perform the analogous to the
Gordon decomposition for spin- 1

2 we write this current in
terms of the four-momentum transfer, q, and the summed
up four-momenta, k,

q = p′ − p, k = p′ + p, (114)

to obtain

jµ(p
′, p) = uα(p′)[−ΓS

αβµνk
ν + ΓA

αβµνq
ν ]uβ(p), (115)

where ΓS
αβµν , and Γ

A
αβµν stand for the symmetric and anti-

symmetric parts under the µ ↔ ν interchanging, respec-
tively,

ΓS
αβµν =

1

2
(Γαβµν + Γαβνµ), (116)

ΓA
αβµν =

1

2
(Γαβµν − Γαβνµ). (117)

It is worth to remark that as long as the tensor Γαβµν is
contracted with the symmetric term pµpν in the free equa-
tion of motion (36), (37), only the symmetric part of this
tensor is uniquely determined by the Poincaré projector.
In contrast to this, the antisymmetric part remains am-
biguous. This insight is crucial for the interacting theory
since it is precisely that very anti-symmetric part that pro-
vides essential contributions to the electromagnetic cou-
plings. As a first step in the elucidation of the electro-
magnetic interactions of an elementary spin- 3

2 particle, we
elaborate the interacting theory for the tensor in eq. (38).
A straightforward calculation yields

ΓS
αβµν = gαβgµν −

2

3
(gµαgνβ + gµβgνα)

+
1

6
[(gµαγν + gναγµ)γβ

+γα(gµβγν + gνβγµ)]

−1

3
γαγβgµν , (118)

ΓA
αβµν =

1

3

[
gµαgνβ − gµβgνα −

i

2
gαβσµν

]

= − i
3
(Mµν)αβ , (119)

where (Mµν)αβ stand for the (homogeneous) Lorentz
group generators in the vector spinor representation as
given in eq. (A.9). Now, in a perturbative calculation
one can use the constraints for the spin- 3

2 fields in the

( 3
2 − 3

2 − γ) vertex and obtain the following Gordon de-
composition for the transition current:

jµ(p
′, p) = uα(p′)[−gαβ(p′ + p)µ −

i

3
(Mµν)αβq

ν

+
2

3
(gµαp

′
β + gµβpα)]u

β(p). (120)
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According to the latter equation the gyromagnetic ratio
is g 3

2

= 1
3 . It can be shown that same value is confirmed

by the gauged equation

[Γαβµνπ
µπν −m2 gαβ ]ψ

β = 0, (121)

with the tensors in eqs. (38), (116), and (117). However,
the wave fronts of this gauged equation when analyzed
along the lines of refs. [21,22] are found to propagate non-
causally. These findings may look unsatisfactory, indeed,
but as we shall see below they are not to remain the last
word neither on the gyromagnetic ratio, nor on the causal-
ity issue. We shall make the point that causal propaga-
tion and gyromagnetic ratio are interconnected and that
causality requires g 3

2

= 2. The main culprit for the severe

underestimation of the gyromagnetic ratio by eq. (120)
is the incompleteness of ΓA

αβµν in eq. (119) as provided
by the space-time invariants. The correct value of the gy-
romagnetic ratio is fixed by Weinberg’s theorem which
states that a well-behaved forward Compton scattering
amplitude for a non-strongly interacting particle with spin
s > 1

2 requires its gyromagnetic factor to equal gs = 2 [28].
The particular case of the W -boson is instructive in that
regard because this particle satisfies Weinberg’s princi-
ple. Indeed, while the standard model predicts for the
W -boson gs = 2, the naive U(1)em gauging of Proca’s
equation yields gs = 1. The difference between these two
values is accounted for by additional contributions coming
from the full non-Abelian SU(2)I ⊗ U(1)Y gauge struc-
ture in combination with the spontaneous breaking of the
electroweak gauge symmetry. On the other hand, more re-
cently, it was also shown that the tree-level value of the
gyromagnetic ratio of the ρ+-meson is fixed to 2 by self-
consistency of the corresponding effective quantum field
theory [29].

Below we shall show how to take advantage of the am-
biguities of the anti-symmetric part of the Γαβµν-tensor
and construct a Lagrangian and associated wave equation
such that

– the spin- 32 particle is coupled to the electromagnetic
field by a gyromagnetic factor of g 3

2

= 2,

– the wavefronts of the solutions of the gauged equation
propagate causally.

5.1 Gauged spin- 3
2
equation

To begin with we first notice that the most general anti-
symmetric tensor allowed by Lorentz covariance is given
by

Γ̃A
αβµν = −i

[
g
σµν
2
gαβ + ig′(gαµgβν − gανgβµ)

]

+ic(gαµσβν − gανσβµ) + id(σαµgβν − σανgβµ)
+if εαβµνγ

5, (122)

where g, g′, c, d, and f are arbitrary parameters. As a
consequence, there exist infinitely many equivalent free
particle theories differing by the values of the above pa-
rameters. However, upon gauging, all these equivalent free

particle descriptions will become distinguishable through
the different values of the multipole couplings of the spin- 3

2
particle to the photon field. Only one of those coupled the-
ories will correspond to the physical reality. The covariant
projector in eq. (121) with Γαβµν from eq. (38) hits a

Γ̃A
αβµν (the ΓA

αβµν in eq. (119)) that corresponds to the

particular parameter set g = g′ = 1
3 , and c = d = f = 0.

According to our analysis, this parameter set fails both
in the description of the gyromagnetic ratio as dictated
by Weinberg’s theorem and in providing causal propaga-
tion. We shall remove this shortcoming in choosing an

appropriate Γ̃A
αβµν that ensures causal propagation of the

wavefronts of the solutions of eq. (121) within an elec-
tromagnetic environment. In the following, we shall also
adopt f = 0 for simplicity. Then, we notice that hermitic-
ity requires c = −d.

Back to the symmetric Γ S
αβµν-tensor, we observe that

the indices α and β have to be moved to the very left,
and the very right, respectively, in order to work in π · ψ,
and γ · ψ into the wave equation. In so doing, one finds
various terms in ΓS

αβµν that contain the electromagnetic
tensor according to

ΓS
αβµνπ

µπν = π2gαβ +
1

3
(γα 6 π − 4πα)πβ

+
1

3
(πα 6 π − γαπ2) +

2

3
ieFαβ

+
ie

6
γαγ

µFβµ +
ie

6
γµFµαγβ . (123)

whereas the anti-symmetric tensor yields

Γ̃A
αβµν π

µ πν = −i
[
g
σµνπ

µπν

2
gαβ − eg′Fαβ

]
− ie2cFαβ

+ c(πα 6 π− 6 ππα)γβ + cγα(6 ππβ − πβ 6 π). (124)

Putting all together as

[Γ̃αβµνπ
µπν −m2 gαβ ]ψ

β = 0, (125)

Γ̃αβµν = ΓS
αβµν + Γ̃A

αβµν , (126)

results in the following new gauged equation:
(
(π2 −m2)gαβ

−i
[
g
σµνπ

µπν

2
gαβ − e

(
g′ − 2c+

2

3

)
Fαβ

]

+
1

3
(γα 6 π − 4πα)πβ +

1

6
(2πα 6 π − 2γαπ

2)γβ

+ie

(
1

6
− c
)
γµFµαγβ + ie

(
1

6
− c
)
γαγ

µFβµ

)
ψβ

= 0. (127)

The next physical consideration allows to fix the c-
parameter in ΓA

αβµν and refers to the suppression of the
3
2 ↔ 1

2 transitions γ · ψ ↔ ψµ (as required by perturba-
tive calculations) through nullifying the ieγµFµαγβ-, and
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γαγ
µFβµ terms, respectively. In this manner c is fixed to

c = 1
6 and one is left with the two parameters g and

g′ which in turn describe the gyromagnetic ratios of the
fermion and vector part of ψβ . As long as one wishes to
have a spin- 32 coupled by a gyromagnetic factor of g 3

2

and

given by the Lagrangian

Lmag ≡ −
eg 3

2

2
ψ̄α(Mµν)αβψ

βFµν (128)

= −
eg 3

2

2
ψ̄α
(
i(gµαgνβ − gµβgνα) +

σµν
2
gαβ

)
Fµνψβ

= ig 3

2

ψ̄α

(
σµνπ

µπν

2
gαβ − e Fαβ

)
ψβ , (129)

one sees that one needs equality of the spinor and vec-
tor contributions to the gyromagnetic ratio. With this in
mind, from now onward we shall assume g = g′+ 1

3 ≡ g 3

2

.

The corresponding one-parameter equation for an inter-
acting spin- 32 particle is now given by
(
(
π2 −m2

)
gαβ − ig 3

2

(
σµνπ

µπν

2
gαβ − e Fαβ

)

+
1

3
(γα 6 π − 4πα)πβ

+
1

3
(πα 6 π − γαπ2)γβ

)
ψβ = 0. (130)

We shall fix the g 3

2

-parameter from the requirement on

causality. Before this, we notice that equations like (130)
are not genuine because neither the field component ψ0

nor its time-like momentum, π0, ever occur. This behavior
reflects the presence of constraints in eq. (130). In order
to produce a genuine wave equation, one needs to obtain
first the gauged constraints and back-substitute them into
eq. (130). In subsequently contracting eq. (130) by γβ , and
πβ one obtains the gauged auxiliary conditions as

γ · ψ =
ie

6m2

(
3g 3

2

+ 2
)(

Fµβγ
µ + iγ5γαF̃βα

)
ψβ , (131)

and

m2π · ψ =

(
ie

(
1−

g 3

2

2

)
(Fβµπ

µ + πµFβµ) + ieg 3

2

παFαβ

−e
(
g 3

2

4
+

1

6

)
γ5[γαF̃βα, 6 π] + ie

(
g 3

2

4
− 1

6

)

×{γαFβα, 6 π}
)
ψβ + ie

((
g 3

2

4
− 1

6

)

×γν(Fνµπ
µ + πµFνµ)

)
γ · ψ, (132)

respectively. The resulting equation is now genuine and
the wavefronts of its solutions would propagate causally
provided the so-called characteristic determinant of the
matrix that contains only the highest derivatives when
replaced by nµ, the normal vectors to the characteristic
surfaces, nullifies only for real values of n0

1. The Velo-

1 We here follow the calculation patterns of refs. [21] and [22].

Zwanziger problem arises because the characteristic deter-
minant of the (genuine) Rarita-Schwinger equation allows
for n0-roots that can become imaginary for sufficiently
strong electromagnetic fields.

5.2 Causal propagation and gyromagnetic ratio

The expression for the matrix that provides the character-
istic determinant, denoted by D(n, g 3

2

), of eqs. (130) with

the substituted eqs. (131) and (132) is now obtained as

D(n, g 3

2

) = |Mαβ |,

Mαβ = n2gαβ +
1

3
(γα 6 n− 4nα)Nβ

+
1

3

(
nα 6 n− γαn2

)
Γβ ,

Γβ =
ie

6m2

(
3g 3

2

+ 2
)(

Fµβγ
µ + iγ5γµF̃µα

)
,

Nβ =
1

m2

(
ie

(
5

3
− 3

2
g 3

2

)
Fβµn

µ − e
(
g 3

2

4
+

1

6

)

×γ5[γαF̃βα, 6 n]
)

+
ie

m2

(
g 3

2

2
− 1

3

)
γνFνµn

µΓβ . (133)

The covariant form of the characteristic determinant is
now calculated to give

D(n, g 3

2

) = (n2)12

([
n2 − k2

(
5g 3

2

− 2

4

)2

(n · F )2

+k2

(
3g 3

2

+ 2

4

)2 (
n · F̃

)2
]2

+
k2

4

(
3g 3

2

+ 2

4

)2(5g 3

2

− 2

4

)2 (
F · F̃

)2 (
n2
)2
)

×
([

n2 + k2

(
3g 3

2

+ 2

4

)2 [(
n · F̃

)2

− (n · F )2
]]2

+
k4

4

(
3g 3

2

+ 2

4

)2 (
F · F̃

)2 (
n2
)2
)
. (134)

Here, (n·F )ν = nµF
µν , (n·F̃ )ν = nµF̃

µν , F ·F̃ = Fµν F̃
µν ,

and k = 2e
3m2 . It is quite instructive to compare eq. (134)

to the characteristic determinant of the Rarita-Schwinger
equation reported in ref. [21] as

D(n) =
(
n2
)4
[
n2 + k2

(
F̃ · n

)2
]4
. (135)

The advantage of eq. (134) over eq. (135) is that in the for-
mer case it is possible to factorize (n2)16 in the expression
in the brackets on the cost of fixing g 3

2

to either 0 or 2,
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while in the latter such results impossible. To be specific,
using

(n · F̃ )2 − (n · F )2 = −1

2
n2F · F, (136)

and for g 3

2

= 0, 2 the characteristic determinant takes the

following factorized form:

D(n, g 3

2

= 0, 2) = (n2)16((1− 2k2F · F )2 + (2k2F · F̃ )2)2.
(137)

Thus for g 3

2

= 0, 2, the determinant nullifies only for real

and field-independent n0-values given by

n0 = ±
√

n2, (138)

and of multiplicity 16 each, yielding causal propagation.
The vanishing gyromagnetic ratio can be associated with
neutral, and g 3

2

= 2 with charged particles. Compared to

this, only eight, i.e. half, of the roots of the characteristic
RS determinant are necessarily real and given by n0 =√

n2. In order to find the other eight roots it is first quite

useful to write explicitly the four-vector (n · F̃ )ν as

(
n · F̃

)ν
= (B · n, n0B− n×E) . (139)

Substitution in eq. (135) amounts to the following second
order equation for n0:

n2
0(1 − k2B2)− n2 + k2B · n

+ k2
(
2n0B · (n×E)− (n×E)2

)
= 0. (140)

As long as the discriminant of the latter equation is frame
dependent, there are frames where it can become nega-
tive and the roots imaginary. The frame dependence of
eq. (140) also shows up in the possibility of finding frames
where the signal velocity is superluminal, a problem first
addressed by Velo and Zwanziger in refs. [21,22].

The decisive advantage of eq. (130) over the gauged
Rarita-Schwinger equation is the field and there-
fore frame independence of the n0-roots, a behavior
which allows for hyperbolicity of the wave equation,
causal signal propagation, and a gyromagnetic ra-
tio in accord with the requirements of unitarity in
the ultra-relativistic limit.

The final form of the Γ̃αβµν-tensor now reads

Γ̃αβµν = ΓS
αβµν − i

(
σµνgαβ + i

5

3
(gαµgβν − gανgβµ)

)

+ i
1

6
(gαµσβν − gανσβµ)− i

1

6
(σαµgβν − σανgβµ), (141)

with ΓS
αβµν from eq. (118). It is important to emphasize

that also this tensor satisfies eq. (48) meaning that the free
theory remains the same as the one related to eq. (38).

Finally, a comment is in place on the hermiticity of the
equation under discussion. Notice that upon substituting
the gauged auxiliary conditions from eqs. (131) and (132)
into eq. (130) one does not find a Hermitian equation.

Above we gave the causality proof for precisely that very
case for the sake of simplicity of the expressions and with-
out any loss of generality because the proof goes through
also upon making the equation Hermitian. In conclusion,
the covariant spin- 3

2 and mass-m projector method elab-
orated here hits the right way toward the consistent de-
scription of spin- 3

2 within ψµ.

6 Summary

In this paper we developed a spin- 3
2 description on the

basis of the Poincaré covariant mass-m and spin- 3
2 pro-

jectors in ψµ and explicitly worked out the corresponding
Lagrangian and wave equation. Our suggested solution to
the problem of the covariant and consistent description of
spin- 32 coupled to an electromagnetic field is the fully co-
variant second-order equation (36), (37), gauged (130) and
with the tensor Γαβµν given in eq. (141). We studied the
symmetries of the suggested Lagrangian in the massless
limit and their extrapolation to the massive case, where
they gave rise to constraints and introduced parameter de-
pendence of the off-mass shell propagators. We observed
that the off-shell massive spin- 3

2 propagator suggested by
us is of the type of propagators that appear in the massive
gauge theories. From that we concluded that its parameter
dependence is actually brought about by the symmetries
of the massless theory, one of them being the gauge free-
dom, and as such can be handled by means of “gauge” fix-
ing. We introduced electromagnetic interactions into the
theory and showed that the wavefronts of the solutions of
the gauged equation propagate causally provided the gy-
romagnetic factor of the spin- 3

2 particle were to be g 3

2

= 2

in accord with the requirements of unitarity in the ultra-
relativistic limit. In this way causality calls for a g 3

2

= 2

value of a spin- 32 particle that is not a non-Abelian gauge

field. In case the spin- 3
2 particle were to be a gauge field,

one would expect non-Abelian corrections to g 3

2

to be-

come relevant too, much alike the case of the spin-1 elec-
troweak bosons as reviewed by Barry Holstein in ref. [38].
Such a new type of a particle will obviously require its

own appropriate Γ̃A
αβµν-tensor with parameters that allow

for accommodating the non-Abelian corrections. The gy-
romagnetic ratio resulting from the framework presented
here, in not following Belinfante’s gs = 1/s prescription,
supports our claim on the different physical content of the
covariant projector formalism in comparison to the tradi-
tional ones. Our approach rather points on gs = 2 for any
spin and is in accord with Weinberg’s theorem.

The gyromagnetic ratio of g 3

2

= 2 in combination with

the causal propagation and the structure of the off-mass
shell propagator, seem to qualify the formalism elaborated
here as a promising candidate for the consistent descrip-
tion of massive spin- 3

2 fields.

Work supported by Consejo Nacional de Ciencia y Tecnologia
(CONACyT) Mexico under projects 37234-E and C01-39820.
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Appendix A.

In this appendix we collect conventions and some results
on the symmetry of space-time under rotations, boost and
translations transformations that constitute the Poincaré
group for which the squared Pauli-Lubanski vector is a
Casimir invariant. In terms of the Poincaré group genera-
tors, Mµν and pη and their algebra [39]

[Mµν ,Mαβ ] = −i(gµαMνβ − gµβMνα + gνβMµα

−gναMµβ),

[Mαβ , pµ] = −i(gµαpβ − gµβpα),
[pµ, pν ] = 0, (A.1)

where gµν = diag(1,−1,−1,−1) is the metric tensor, the
Pauli-Lubanski (PL) vector is defined as

Wµ =
1

2
εµναβM

ναpβ , (A.2)

with ε0123 = 1. This operator can be shown to satisfy the
following commutation relations:

[Mµν ,Wα] = −i(gαµWν − gανWµ), [Wα, pµ] = 0,

[Wα,Wβ ] = −iεαβµνWµpν , (A.3)

i.e. it transforms as a four-vector under Lorentz transfor-
mations. Moreover, its square commutes with all the gen-
erators and is a group invariant. For this reason, elemen-
tary particles are required to transform invariantly under
the action ofW2 and to be labeled by theW2 eigenvalues
next to those of p2.

In general, for a specific representation, the generators
of the (homogeneous) Lorentz groupMµν carry additional
indices. We denote these indices by capital Latin letters
as (Mµν)AB . The Lorentz group generators in the vector
(i.e. ( 1

2 ,
1
2 )) and spinor (i.e. ( 1

2 , 0) ⊕ (0, 1
2 )) space are re-

spectively given as

(Mρσ
V )αβ = i(gραg

σ
β − gρβgσα), (Mρσ

S )ab =
1

2
(σρσ)ab.

(A.4)
The indices A,B are Lorentz indices (in the vector ba-
sis) for the vector space: A = {α}, B = {β}, whereas
for the spinor representation they are spinorial indices:
A = {a}, B = {b}. The Pauli-Lubanski operators in vec-
tor and spinor space, denoted respectively by W λ, wλ,
have the explicit form

[Wλ]αβ = iελαβµp
µ, (wλ)ab =

i

2
(γ5σλν)abp

ν . (A.5)

The squared Pauli-Lubanski operators are now calculated
as

[W 2]αβ = −2 (gαβgµν − gανgβµ) pµpν , (A.6)

[w2]ab = −
1

4
(σλµ)ac(σ

λ
ν)cbp

µpν . (A.7)

In particular, our general equation (20) for the spin-1 sub-
space in ( 1

2 ,
1
2 ) reads

[W 2] β
α Aβ = −2m2Aα. (A.8)

As for the vector spinor space, the (homogeneous) Lorentz
group generators are given by

(Mρσ)αβab = (Mρσ
V )αβ δab + gαβ(M

ρσ
S )ab. (A.9)

The Pauli-Lubanski vector for the vector spinor represen-
tation reads

(Wλ)αaβb = (Wλ)αβδab + gαβ(w
λ)ab. (A.10)

The indices A,B in this case correspond to the sets A =
{αa}, B = {βb}. The squared Pauli-Lubanski operator in
the vector spinor representation reads

(W2)αβab = (W 2)αβδab + (W )αβ · (w)ab + (w)ab · (W )αβ

+gαβ(w
2)ab. (A.11)

We obtain the involved operators as

(W 2)αβ = −2 (gαβgµν − gανgβµ) pµpν ,

(w2)ab = −
1

4
(σλµσ

λ
ν)ab p

µpν ,

(W · w + w ·W )αaβb = −
1

2
(ελ αβµγ

5(σλν)ab

+ελ αβνγ
5(σλµ)ab) p

µpν . (A.12)

In substituting eqs. (A.12) into (A.11) results in

(WλWλ)αβab = Tαaβbµνp
µpν , (A.13)

with

Tαaβbµν = −2 (gαβgµν − gανgβµ) δab −
1

4
gαβ(σλµσ

λ
ν)ab

−1

2
(ελ αβµγ

5(σλν)ab + ελ αβνγ
5(σλµ)ab). (A.14)

Appendix B.

In this appendix we construct the solutions of the free par-
ticle equation (40) for the massive case in the basis of the
direct products of the polarization four-vectors εµ(p, s)
and generic ( 1

2 , 0) ⊕ (0, 1
2 ) spinors, denoted by w(p, σ),

where s = ±1, 0 (σ = ± 1
2 ) stands for the spin-1 (spin- 1

2 )
magnetic quantum number. The solutions to the wave
equation are written as

ψβ(x) = wβ(p, λ)e±ip·x. (B.1)

The vector spinors wβ(p, λ) satisfy the equation

Kαβ(p)w
β(p, λ) = m2wα(p, λ), (B.2)

where λ denotes the spin- 3
2 magnetic quantum number.

The solutions are constructed from the coupling between
the vector and the spinor representations in momentum
space using the coefficients of Clebsh-Gordan of the little
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group to the Lorentz group which for massive particles is
SU(2), the universal covering of O(3),

wβ(p, λ) =
∑

s,σ

〈
1, s;

1

2
, σ

∣∣∣∣1,
1

2
;
3

2
, λ

〉
εβ(p, s) w(p, σ).

(B.3)
The specific combinations are:

wβ

(
p,

3

2

)
= εβ(p, 1) w

(
p,

1

2

)
, (B.4)

wβ

(
p,

1

2

)
=

√
1

3
εβ(p, 1) w

(
p,−1

2

)

+

√
2

3
εβ(p, 0) w

(
p,

1

2

)
,

wβ

(
p,−1

2

)
=

√
1

3
εβ(p,−1) w

(
p,

1

2

)

+

√
2

3
εβ(p, 0) w

(
p,−1

2

)
,

wβ

(
p,

3

2

)
= εβ(p,−1) w

(
p,−1

2

)
.

It is important to be aware of the fact that the basis vec-
tors in any irreducible representation of the Lorentz group
are defined exclusively by the Lorentz group generators
and can be constructed straightforwardly from the respec-
tive algebra and without any reference to a wave equation.
Only afterward can one entertain (or, construct from the
group invariants as done in this work) various wave equa-
tions that have as solutions the states of interest and which
are fully or partially consistent with the Lorentz group
structure. With this in mind, any wave equation in mo-
mentum space that claims to describe spin- 3

2 in ψµ, be it
the Rarita-Schwinger framework, be it the approach pre-
sented here, or, any other equation, necessarily hits the
generic four-vector spinors in eqs. (B.4), modulo, as we
shall see below, possible differences in the basis choice in
the spinor space. Our main point here is that compared to
the Rarita-Schwinger formalism, our equation (40), being
built up systematically from the Casimir invariants of the
Lorentz and the Poincaré groups, provides a better tool
for the description of particles coupled to external electro-
magnetic fields. Nonetheless, it is instructive to highlight
the construction of the solutions to eq. (40) in order to
discuss the number of degrees of freedom upon passing to
coordinate space.

The specific example under consideration, the four-
vector space, has been studied along the above line, among
others, in ref. [40]. There, one finds the explicit expressions
for the polarization vectors (up to notational differences)
as

εβ(p,+1) = − 1√
2m(p0 +m)




(p0 +m)p+

m(p0 +m) + p1p+

i[m(p0 +m)− ip2p+]

p3p+


 ,

(B.5)

εβ(p, 0) =
1

m(p0 +m)




(p0 +m)p3

p3p1

p3p2

m(p0 +m) + (p3)2


 , (B.6)

and

εβ(p,−1) = 1√
2m(p0 +m)




(p0 +m)p−

m(p0 +m) + p1p−

−i[m(p0 +m) + ip2p−]

p3p−


 ,

(B.7)
where p± = p1 ± ip2. These states are normalized as

[εβ(p, s)]
†
εβ(p, s′) = −δss′ , (B.8)

and reduce to the well-known S2–, and Sz eigenstates in
the rest frame,

εβ(0, 1) =
1√
2
(0,−1,−i, 0) , εβ(0, 0) = (0, 0, 0, 1),

εβ(0,−1) =
1√
2
(0, 1,−i, 0). (B.9)

In order for the vector spinors in eq. (B.4) to describe
spin- 32 they have to satisfy the constraints,

pβw
β(p, λ) = 0, γβw

β(p, λ) = 0. (B.10)

It is easy to check that the first condition is fulfilled for all
wβ(p, λ) in eq. (B.4) because of pβε

β(p, s) = 0, while the
second condition imposes restrictions on the spinor com-
ponents. For the sake of transparency, we first solve these
constraints in the rest frame. The corresponding spinors
in an arbitrary frame can then be easily obtained just in
boosting them by the boost operator for the ( 1

2 , 0)⊕(0, 1
2 )

representation space which can be found, e.g., in [41] and
is given by

BS(p) =
1√

2m(p0 +m)

(
p0 +m σ·p
σ·p p0 +m

)
. (B.11)

The condition γβw
β(0, λ) = 0 requires the spinors to sat-

isfy

γ+w

(
0,

1

2

)
= 0,

γ+ w

(
0,−1

2

)
− γ3 w

(
0,

1

2

)
= 0,

γ−w

(
0,

1

2

)
+ γ3 w

(
0,−1

2

)
= 0,

γ−w

(
0,−1

2

)
= 0, (B.12)

where γ± ≡ γ1± iγ2. A straightforward calculation shows
that the most general form of the spinors satisfying the
above constraints are

w

(
0,

1

2

)
=



a
0
b
0


 , w

(
0,−1

2

)
=




0
a
0
b


 , (B.13)
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where a, b are arbitrary complex parameters. Normaliza-
tion requires |a|2 − |b|2 = 1. Notice that the w(0, 1

2 )- and

w(0,− 1
2 )-spinor entering the construction of the spin- 3

2 in
eq. (B.4) are related to each other. Once we choose a spe-
cific w(0, 1

2 )-spinor, its w(0,− 1
2 )-companion is fixed. The

constraints allow only two independent spinors w(0, 1
2 )

to enter the spin- 32 construct and which in turn yield two

spin- 32 multiplets. The specific form of the latter depends

on the basis chosen for w(0, 1
2 ). A natural choice is the

Dirac basis and we shall use it in the following for the
sake of definitiveness but from eq. (B.13) it is clear that
our approach does not restrict to this choice. These two
multiplets are generated by

w(1)

(
0,

1

2

)
≡ u

(
0,

1

2

)
=




1
0
0
0


 ,

w(1)

(
0,−1

2

)
≡ u

(
0,−1

2

)
=




0
1
0
0


 , (B.14)

and

w(2)

(
0,

1

2

)
≡ v

(
0,

1

2

)
=




0
0
1
0


 ,

w(2)

(
0,−1

2

)
≡ v

(
0,−1

2

)
=




0
0
0
1


 , (B.15)

the w(r)(0,− 1
2 )’s, with r = 1, 2, being dictated by the

constraints according to eq. (B.13). The corresponding
boosted spinors can be easily constructed as conven-
tional Dirac spinors just in applying the boost operator
in eq. (B.11). In so doing, one obtains

w(1)

(
p,

1

2

)
= N




p0 +m
0
p3

p+


 ,

w(1)

(
p,−1

2

)
= N




0
p0 +m
p−

−p3


 , (B.16)

and

w(2)

(
p,

1

2

)
= N




p3

p+

p0 +m
0


 ,

w(2)

(
p,−1

2

)
= N




p−

−p3

0
p0 +m


 , (B.17)

where N = 1/
√

2m(p0 +m) . The w(1)(p, σ)-spinors

are normalized to 1, and the w(2)(p, σ)’s to (−1), be-
ing mutually orthogonal, meaning that the ( 1

2 , 0)⊕ (0, 1
2 )-

representation is spanned by four basis vectors, as it
should be. The spin- 3

2 vector spinors in eqs. (B.4) which

contain the specific w(1)(p, σ)- and w(2)(p, σ)-spinors in
eqs. (B.16), (B.17), will be from now onward denoted
by Uµ(p, λ), and V µ(p, λ), respectively. The Uµ’s and
V µ’s are normalized in their turn to (−1), and 1, and
span a basis of the spin- 3

2 Poincaré subspace in the

( 1
2 ,

1
2 )⊗ ( 1

2 , 0)⊕ (0, 1
2 )-representation space.

In principle, we have the following 16 vector spinors:

ψβ
U (p, λ) = e±ip·xUβ(p, λ), (B.18)

ψβ
V (p, λ) = e±ip·xV β(p, λ), (B.19)

as the solutions to

KαβΨ
β = m2Ψα. (B.20)

However, it has to be emphasized that no doubling oc-
curs in momentum space. In momentum space one encoun-
ters the correct number of degrees of freedom as required
for the description of a spin- 3

2 particle and anti-particle,
namely eight. The doubling of the solutions occurs solely
in x-space and at cost of the exp(±ip·x) phase factor. This
phase factor can be fixed upon quantization in such a way
that the positive energy accompanies, say, the Uµ, while
the negative one, the V µ vector spinors. In this fashion,
the quantized theory can be furnished to contain again
only the required eight degrees of freedom. In order to
show this, we must first construct the charge conjugation
operator. It can be easily shown that if ψβ(x) is a solution
of the equation of motion coupled to an external electro-
magnetic field,

[
Γαβµν(∂

µ − ieAµ)(∂ν − ieAν) +m2gµν
]
ψβ(x) = 0,

(B.21)
then the charge conjugated field,

ψβ
c ≡ ηcγ

2γ0
(
ψ
β
)T

, (B.22)

with ηc a phase, satisfies eq. (B.21) but with the opposite
charge, i.e.

[
Γαβµν(∂

µ + ieAµ)(∂ν + ieAν) +m2gµν
]
ψβ
c (x) = 0.

(B.23)
Under charge conjugation the solutions in eq. (B.1) trans-
form as

ψµ
c (x) = wµ

c (p, λ) e
∓ip·x, (B.24)

where

wµ
c (p, λ) ≡ ηcγ

2γ0 [w̄µ(p, λ)]
T
. (B.25)
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A straightforward calculation using the general spinors in
eq. (B.13) yields

wβ
c

(
p,

3

2

)
= iηc

(
εβ(p,−1) χ

(
p,−1

2

))

≡ χβ

(
p,−3

2

)
,

wβ
c

(
p,

1

2

)
= −iηc

(√
1

3
εβ(p,−1) χ

(
p,

1

2

)

+

√
2

3
εβ(p, 0)χ

(
p,−1

2

))
≡χβ

(
p,−1

2

)
,

wβ
c

(
p,−1

2

)
= iηc

(√
1

3
εβ(p, 1) χ

(
p,−1

2

)

+

√
2

3
εβ(p, 0) χ

(
p,

1

2

))
≡ χβ

(
p,

1

2

)
,

wβ
c

(
p,

3

2

)
= −iηc

(
εβ(p, 1) χ

(
p,

1

2

))
≡ χβ

(
p,

3

2

)
.

where, χ(p, σ) are obtained by boosting the following gen-
eral rest frame spinors:

χ

(
0,

1

2

)
≡



−b∗
0
a∗

0


 , χ

(
0,−1

2

)
≡




0
−b∗
0
a∗


 .

(B.26)
Notice that also the states in eq. (B.26) carry spin- 3

2 and

satisfy the constraints, γβw
β
c (0, λ) = pβw

β
c (0, λ) = 0. As

such they have necessarily the same structure as those in
eq. (B.4) modulo the different phase convention. That the
w(2)(0,± 1

2 ) constructs act as anti-particles to w
(1)(0,± 1

2 )
can be seen explicitly from eqs. (B.14), (B.15) in which
case we obtain

Uβ
c (p, λ) = η(λ)V β(p,−λ). (B.27)

Here, η(λ) = iηc for λ = 3
2 ,− 1

2 and η(λ) = −iηc for λ =

− 3
2 ,

1
2 . In summary, the spin- 3

2 subspace of the four-vector
spinor representation space has the desired eight degrees

of freedom in momentum space, {w(1)β(p, λ), w
(1)β
c (p, λ)}.

If the latter states are identified as particles with the cor-
responding solutions being

ψβ(p, λ) = e−ip·xw(1)β(p, λ), (B.28)

then the charge conjugated solutions are

ψβ
c (p, λ) = e+ip·xw(1)β

c (p, λ) = η(λ)e+ip·xw(2)β(p,−λ).
(B.29)

Certainly, states with the phases e−ip·x and e+ip·x inter-
changed are also solutions, but this amounts just to inter-
changing roles between particles and antiparticles. Finally,
we like to stress once more that although the standard
Rarita-Schwinger spinors also satisfy eq. (40), the formal-
ism applies to any generic spinors in ( 1

2 , 0)⊕ (0, 1
2 ), and is

not restricted to the Dirac spinors employed above.

As to vector spinors that describe massless particles,
it has to be said that these cannot be obtained from the
massive ones in taking the limit of interest. This is due to
the circumstance that the little group of massless particles
is the universal covering of the group of translations on the
plane and not SU(2) as in the case of massive particles.
The Casimirs of the symmetry group of the massless the-
ory are not limiting cases of the Casimirs of the symmetry
group underlying the massive theory. If one wishes to de-
scribe massless spin- 3

2 particles, such as the massless grav-
itino, or, possibly massless excited leptons, one needs to
design the theory from scratch in starting with projectors
onto maximal helicities of massless particles. This prob-
lem is not new but also inherent to the Rarita-Schwinger,
or, more general, to the Fierz-Pauli formalism, where sev-
eral schemes are under consideration specifically in the
gravity literature [42]. The description of massless spin- 3

2
particles in the spirit of the present study, i.e. in terms of
Lagrangians that have been systematically designed from
the Casimir invariants of the relevant symmetry group of
the problem, is certainly a problem worth to be looked up
in future research.
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